
 

 

 

 

 

 

 

 

 

Impact of Tandem on Flow Characteristics around Surface-piercing Finite Circular Cylinders 

 
Minghai Wang1, Wenbin Zhang1, Wentao Wang1,2, Decheng Wan1*    

  
1 Computational Marine Hydrodynamics Lab (CMHL), School of Naval Architecture, Ocean and Civil Engineering,  

Shanghai Jiao Tong University, Shanghai, China  
2 China Ship Scientific Research Center, Wuxi, China 

*Corresponding Author 

 

 

ABSTRACT   

 

Tandem surface-piercing finite circular cylinders are common structures 

in ocean and coastal engineering. This work presents high-fidelity 

numerical simulations of the flow past single and two tandem cylinders 

based on the adaptive mesh refinement technique. The free surface is 

captured using a geometrical volume of fluid method based on piecewise 

linear interface calculation. The Dirichlet boundary condition on the 

cylinders is archived using the embedded boundary method. The flow 

characteristics are compared to the flow field past a single cylinder and 

discussed. A parametric study investigates the distinct flow patterns 

depending on the gap/diameter ratio /l D  between two cylinders. The 

distance is divided into three different cases: close ( / 2l D = ), medium 

( / 3l D = ), and far ( / 5l D = ). The free surface deformation, the 

velocity distribution, and the vortex shedding features are all influenced 

by the tandem arrangement. Moreover, the tandem arrangement together 

with the free surface and the free end shows combined effects on the flow 

field. This study contributes to applying adaptive mesh refinement 

technique on the flow-structure interaction and provides a valuable 

reference for ocean engineering applications. 

 

KEY WORDS: adaptive mesh refinement; free surface; tandem 

cylinders; air entrainment; 

 

INTRODUCTION 

 

Surface-piercing cylinders are simplified models for many Marine 

engineering structures. A single surface-piercing cylinder can represent 

marine platforms including Spar, cylindrical FPSO, aquaculture cage, etc. 

The piles or mooring lines of a floating platform foundation, as well as 

a row of marine risers, can be simplified as tandem surface-piercing 

cylinders. Hence, understanding the behavior of the free surface as it 

interacts with the cylinders is an interesting endeavor with an increasing 

amount of interest (Keough et al., 2024).  

 

Flow past a surface-piercing circular cylinder has been extensively 

studied through experiments and numerical simulations. In the early 

years, Hay (1947) conducted extensive experiments on flow past 

surface-piercing circular cylinders with various cylinder diameters, 

draught, and inlet velocities. Due to the limitations of measurement and 

photographic techniques, Hay's studies did not involve detailed 

characteristics in the free surface deformation and flow field. In recent 

years, owing to significant advancements in pool experiment technology 

and high-performance computer technology, numerous experimental 

studies (Ageorges et al., 2019; Chaplin and Teigen, 2003; Hilo et al., 

2022; Keough et al., 2024) and numerical studies (Ageorges et al., 2021; 

Chen et al., 2022; Kawamura et al., 2001; Koo et al., 2014; Suh et al., 

2011) have been conducted on the flow around a surface-piercing 

cylinder at various Froude numbers, Reynolds numbers and cylinder 

sizes. Detailed flow structures and the impact of the free surface on the 

cylinder flow have been thoroughly investigated. The free surface was 

found to dramatically change the drag force distribution in the spanwise 

of the cylinder and attenuate the vortex shedding. A large number of 

small flow structures were generated near the free surface and produced 

many unique flow phenomena. Among the studies, Chen et al. (2022) 

provided a thorough investigation of the turbulent structures and 

characteristics of flows past a vertical surface-piercing finite circular 

cylinder at 1.1Fr =  and 
52.7 10Re =   recently. The effects of the free 

surface and the free end, the velocity profile, separation angle, vorticity, 

and turbulent kinematic energy at different spanwise positions were 

discussed respectively. The instantaneous and time-averaged primary 

vortex structures were identified and examined by using the Omega-

Liutex method. A spectral analysis at different probes on the cylinder 

surface and in the wake region determining the dominant frequencies for 

each primary turbulent structure was also included. 

 

The introduction of tandem effects makes the problem more complex. 

For the single-phase flow, the tandem impact on the vortex shedding in 

the cylinder wake has been classified into three distinct flow regimes 

according to the gap/diameter ratio l / D  by Zdravkovich, (1987). For 

1 / 1.2 ~ 1.8l D   depending on the Reynold number, the free shear 

layers separated from the upstream cylinder do not reattach on the 

downstream cylinder. The vortex street is actually formed by the free 

shear layers detached from the former. For 1.2 ~ 1.8 / 3.4 ~ 3.8l D  , 

the free shear layers reattach on the upstream side of downstream 

cylinder. A vortex street is formed only behind the downstream cylinder. 

For / 3.4 ~ 3.8l D  , the separated shear layers roll up alternately and 

form vortices between the gap and two vortex streets are formed behind 

the cylinders. Similar flow regimes were also observed by numerical 

simulations at various Froude numbers and Reynold numbers (Carmo 

and Meneghini, 2006; Kitagawa and Ohta, 2008).  
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However, to the best of our knowledge, the flow past two tandem 

surface-piercing circular cylinders is rarely researched. The primary 

focus of this study is to fill in the gaps and study the interaction between 

the tandem impact and the free surface. First of all, the numerical 

approaches used in this study are introduced. Then the numerical setup 

including the physical model, the computational domain and mesh, and 

a numerical validation is presented. The results and discussions focus on 

the tandem effect on the free surface, the vertical velocity distribution, 

and the vertical vorticity at different spanwise directions to investigate 

the three-dimensional flow features. Finally, the main conclusions are 

drawn. 

 

 

NUMERICAL APPROACHES 

 

Governing equations 

 

The Navier-Stokes equation for the two-phase flow is solved in three 

dimensions using relevant solvers in Basilisk with surface tension 

considered. The governing equations are presented as follows:  
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where   is the density of fluid, ( ),u v=u  is the velocity vector of fluid, 

p  is pressure,   is the fluid dynamic viscosity. The term s n  is 

introduced to consider the effect of surface tension where   is the 

surface tension coefficient,   and n  are the curvature and normal unit 

vector to the interface, and the surface Dirac function s  helps 

distinguish the fluid interface. It equals one on the interface and zero 

otherwise. 

 

In order to capture the free surface between the air phase and water phase, 

the volume of fluid method (VOF) is adopted. The fraction function 

( ),t x  is introduced as the volume fraction of water in each cell. The 

density and viscosity of a cell can be written as: 
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where a , w , a , w  are the density and viscosity of air and water. 

The evolution of the interface is given by the advection equation below: 
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Adaptive mesh refinement 

 

As implemented in the Basilisk solver, the tree-based adaptive mesh 

refinement technique (AMR) plays a crucial role in enhancing the 

accuracy of numerical simulations while conserving computational 

resources. This method dynamically adjusts the mesh cell size 

throughout the simulation, allowing for a more detailed examination of 

small-scale flow structures such as bubbles and droplets, which are 

critical in this study. 

 

The AMR module in Basilisk is powered by wavelet analysis, which is 

rooted in multi-resolution analysis and allows for estimating numerical 

errors in the representation of spatially discretized fields. This study uses 

the gradient of the velocity field and the volume fraction field for wavelet 

analysis. When the gradient of the velocity field or the volume fraction 

field of water reaches a predefined threshold of 0.01, the parent cell is 

refined into eight child cells. (shown in Fig. 1) 
 

 
Fig. 1 Octree adaptive mesh refinement 
 
 
Embedded boundary method 

 

The Embedded boundary method, also known as the cut-cell method, is 

adopted to simulate the curved cylinder surface in adaptive Cartesian 

meshes. An approach similar to the PLIC method in VOF is employed 

to capture a sharp solid interface. First of all, a signed function ( ) x  is 

applied to the vertexes of the cell (shown in Fig. 2(a)). Specify solids 

inside 0  , outside 0  . Then determine the line fraction d  on 

each boundary of the cell, representing the fraction of solids on that edge: 
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where d  represents the sides, sign  represents the sign function, and 1 ,

2  is the value of any two vertices. From the line fractions on all 

boundaries, the interface normal Sn  and solid volume fraction SC can 

be calculated: 
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where, dn  is the normal direction of each boundary and F  is a 

predefined function in Basilisk. 

 

  

(a) (b) 

Fig. 2 The calculation of the solid volume fraction 
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Then a 3-D implementation of variable values on the solid interface 

described by Schwartz et al. (2006) is used to achieve the Dirichlet 

boundary condition on the solid surface: 

 

 (7) 

 

where B  is the value of   on the solid interface. . 1
I ., 2

I , are the 

values of   on the two points for gradient interpolation, respectively. 

1d , 2d  are the distances between the solid interface and the two points. 

The values of 1
I , 2

I  are calculated using the biquadratic interpolation 

with 9 values on the cell center. A sketch of the implementation is shown 

in Fig. 3. 

 

 
Fig. 3 A sketch of the 3-D implementation  

 

 

NUMERICAL SETUP 

 

Physical model  

 

This paper simulates and studies flow past a single and two tandem 

surface-piercing cylinders under Froude number Fr  equaling 1.3. The 

Froude number is defined as 0 /Fr U gD= , where 0U  is the uniform 

inlet velocity, 
29.8067 /g m s=  is the gravity acceleration, D  is the 

diameter of the cylinder. Following previous experimental studies by 

Ageorges et al. (2019), D  is set to 0.05m and the draught of the cylinder 

h  is set to 2.55h D= . Then 0U  is set to 0.91 /m s , correspondingly. 

The density ratio of water and air is set to / 1000 / 1 1000w a  = =  and 

the viscosity ratio of water and air is set to 
3 5/ 1.14 10 /1.79 10 63.7w a  − −=   = . The surface tension 

coefficient   is set to 72.8mN/m. The location of the other cylinder is 

controlled by the gap length l  between two cylinders. We have three 

different cases in this study / 2,3,5l D = . 

 

Computational domain and mesh 

 

The size of the computational domain is set to 15 20D x D−  

streamwise, 15 15D z D−  cross-stream, and 8 8D y D−  vertically. 

In the single-cylinder case, the origin is set to the center of the cylinder 

waterplane. In the tandem cylinder case, the origin is set to the center of 

the waterplane of the cylinder closer to the outlet.  For the boundary 

conditions, a uniform inflow is set at the inlet and the Neumann boundary 

condition is applied for the outlet. A no-slip Dirichlet boundary condition 

is put on the surface of the circular cylinder using EBM, as discussed in 

the former section. A sketch of the computational model is shown in  

Fig. 4.  

 

 
 

Fig. 4 A sketch of the computational model 

 

 

Mesh convergence test and numerical validation 

 

A mesh convergence test is performed at first using the single cylinder 

case with three different maximum refinement levels 8,9,10  

(corresponding to 
3 3 3256 ,512 ,1024  uniform meshes, respectively). The 

grid convergence index (GCI) introduced by Celik et al. (2008) is 

adopted and the bow wave height 1 /D D  and the depression depth 

0 /L D  are the chosen flow parameters for quantification. The results are 

shown in Table 1. Parameter 21 2 1  = −  and 32 3 2  = −  are the 

absolute error where   is the value of the chosen flow parameters, the 

subscript 1,2,3  represents fine, medium, and coarse meshes, 

respectively. 21 32/R  =  is the convergence ratio. As shown in Table 

1, the absolute values of the convergence ratio for both parameters are 

low, indicating a converged trend. The numerical uncertainties of the 

fine mesh are 21 1.186%,0.763%GCI = , indicating a low uncertainty for 

capturing the free surface characteristics. It is concluded that the fine 

mesh (maximum refinement level equal to 10) is sufficient for the 

numerical simulation and analysis. 

 

Table 1 Mesh convergence study by GCI 

Parameter 21  32  R  
21GCI

(%) 

32GCI

(%) 

1 /D D  -

0.0148 

-

0.0538 
0.2749 1.186 4.425 

0 /L D  0.0103 
-

0.0525 

-

0.1966 
0.763 3.977 

 

 

Then the numerical approaches are validated by a single cylinder case 

discussed in Chen et al. (2022). The free surface deformation on two 

different planes  and  simulated by the present approach 

is compared to the experimental results and DDES results. As shown in 

Fig. 5, the trend of the free surface deformation matches well with the 

experimental results and the previous numerical results.  
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(a) / 0z D =  

 
(b) / 1z D =  

 

Fig. 5 Free surface deformation at / 0z D =  and / 1z D =   

 

 

RESULTS AND DISCUSSIONS 

 

Free surface deformation 

 

Fig. 6 shows the time-averaged free surface deformation in the four cases. 

A typical wave run-up in front of the cylinder and a depression region 

behind the cylinder is observed in the single cylinder case. A wave crest 

is formed behind the depression region in the center, and the wave height 

decays along both sides. When a downstream cylinder is put into the flow 

field, the free surface deformation becomes complicated and shows 

many distinct characteristics. At / 2l D = , the free surface deformation 

behaves similarly to a single object. A vertical jet appears in front of the 

downstream cylinder with a steep slope observed between the cylinders, 

indicating active flow in this region. The depression region behind the 

cylinder is larger compared to the single cylinder case and the wave crest 

is also higher. This suggests a superposition effect of the wakes from the 

two circular cylinders. At / 3l D = , more free surface deformation is 

observed around the downstream cylinder. The free surface of the wake 

changes greatly near the z-direction centerline, with the wave crest in the 

center disappearing. This is distinct from the / 2l D =  case. However, 

the free surface away from the centerline is less influenced. At / 5l D = , 

the wake of the downstream cylinder separates from the front cylinder, 

suggesting a reduced tandem effect on the downstream cylinder. The 

wake of the front cylinder is more influenced by the bow wave of the 

downstream cylinder, leading to a reduced area and depth of the 

depression region. The wave height of the wake is even lower, showing 

a remarkable canceling effect which is contrary to the / 2l D =  case. 

 
(a) Single cylinder 

 
(b) / 2l D =  

 
(c) / 3l D =  

 
(d) / 5l D =  

 
Fig. 6 Time-averaged free surface deformation 
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Fig. 7 further plots the time-averaged free surface deformation in the

/ 0z D =  plane. The area between the two cylinders is hidden to better 

compare the characteristics of the bow wave and the wake region. It is 

observed that the bow wave height in front of the upstream cylinder is 

consistent in the four cases. It indicates that the flow in the front of the 

upstream cylinder is rarely affected by the downstream cylinder. The 

inflow of the downstream cylinder is masked by the upstream cylinder. 

Therefore, the bow wave reflection of the downstream cylinder is limited. 

In contrast, the wakes behind the downstream cylinder in the four cases 

vary a lot. At / 2l D = , the wave crest behind the downstream cylinder 

is closer to the cylinder and higher than the single cylinder case. 

However, the wake decays quickly along the streamwise direction and 

disappears behind / 5x D = . The wave crest is hardly seen at 

/ 3,5l D = . This conforms to the observation above that the wake shows 

a superposition regime at / 2l D =  and shows a cancelling regime at 

/ 3,5l D = . Despite that, the depths of the depression region in the 

tandem cylinder flows are all smaller than that in the single cylinder case. 

 

 
Fig. 7 Time-averaged free surface deformation on / 0z D =  

 

 

Velocity distribution 

 

The tandem arrangement strongly influences the velocity distribution of 

the cylinder flow as well. Fig. 8 plots the velocity distribution at the 

central vertical plane in the four cases. The white line represents the 

time-averaged free surface. For the single cylinder case, flow separation 

is observed at both vertical ends of the cylinder. The separation in the air 

is larger than that in the water, due to the depression of the free surface. 

A larger vortex and backflow region is formed in the air subsequently. A 

high-speed region is observed under the wake, indicating a strong flow 

shearing in this region. The upwash flow generated from the free end 

also affects the wake flow. For 2l / D = , the velocity distribution 

features change significantly compared to the single cylinder case. Due 

to the downstream cylinder's existence, the free-end flow separation 

from the upstream cylinder is attenuated. The shear layer in the water 

reattaches the free end of the downstream cylinder and the upwash flow 

is disappeared. On the contrary, the shear layer in the air doesn’t reattach 

and a smaller vortex is formed in the gap. It is also observed that the 

high-speed region behind the downstream cylinder is larger, indicating a 

superposition regime and conforming to the observation of the free 

surface. For 3l / D = , the flow characteristics in the gap region are 

more similar to that behind the single cylinder. The shear layer separated 

from the downstream cylinder is still mainly composed of shear layers 

from the upstream cylinder. The high-speed region behind the 

downstream cylinder is eliminated, indicating a canceling regime. The 

upwash flow is not observed in this case, but an upwash flow with a low 

speed is seen in the separation region. This phenomenon explains the 

reduction of the depression depth. For 5l / D = , the influence of the 

downstream cylinder is reduced, with the flow separation and the upwash 

flow seen in the gap region. The shear layer independently generates 

from the free end of the downstream cylinder and forms a second upwash 

flow. By comparing the velocity distribution behind the upstream and 

the downstream cylinder, close relationships between the velocity 

distribution at / 0z D =  and the free surface deformation are found. The 

steeper free surface is related to the high-speed flow beneath the free 

surface.  

 

 
(a) Single cylinder 

 
(b) / 2l D =  

 
(c) / 3l D =  

 
(d) / 5l D =  

 
Fig. 8 Time-averaged velocity distribution at 0z / D =  

 

Vortex shedding 

 

In this sub-section, we further discuss the combined influence of tandem 

arrangement, the free surface, and the free end on the flow features in the 

cylinder flow by investigating the vortex shedding characteristics. Fig. 

9~11 show the vertical direction vortex shedding at different spanwise 

directions for the four cases. The vortex shedding feature shown in Fig. 
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9(b) which is in the middle of the single cylinder is close to the single-

phase cylinder flow and plays the role of a standard pattern. Two 

symmetry shear layers develop and separate from the cylinder. The free 

surface and the free end significantly change the flow patterns. In Fig. 

9(a), wider distributions of small vortexes are observed behind the 

circular cylinder and in the wake area. The vortex structures are closely 

related to the free surface deformation. Near the free end, the vortex 

shedding is suppressed a lot owing to the upwash flow discussed above, 

as shown in Fig. 9(c). The introduction of the tandem arrangement 

significantly changes the vortex shedding for all spanwise directions. In 

the middle for / 2l D =  (Fig. 10(b)), the shear layer reattaches the 

downstream cylinder. The downstream cylinder plays a disturbing role 

in the vortex shedding, making the shedding wider and more unstable. 

However, near the free surface (Fig. 10(a)), the distribution width of the 

shedding is attenuated. This is because the vortexes reattach and separate 

from the downstream cylinder, and the downstream cylinder plays the 

role of vortex attraction. It is also observed that the vortexes are stronger 

due to the cylinder interaction. It is the origin of the high-speed region 

observed in Fig. 8(b) and further explains the superposition regime of 

the free surface deformation. Near the free end (Fig. 10(c)), vortex 

shedding is complete, varying greatly from the single case. This is due 

to the disappearance of the upwash flow discussed above. For all three 

spanwise directions, no flow separation and shear layers generated from 

the downstream cylinder are observed, indicating that the upstream 

cylinder masks the inlet flow. In this case, the two cylinders act like a 

whole elliptic cylinder. When the gap length increases to / 3l D =  (Fig. 

11), the shear layers separated from the middle fail to reattach the 

downstream cylinder and form complete vertical vortexes. The vortexes 

behind the downstream cylinder at / 1.5y D = −  are still mainly 

composed of vortexes from the upstream, except for a weak pair of 

vortexes seen near the center behind the downstream cylinder. However, 

the flow separation of the upstream cylinder near the free surface is 

attenuated compared to the single case. The active free surface 

deformation in the gap produces a vortex region in front of the 

downstream cylinder. Two shear layers are observed behind the 

downstream cylinder and form the vortex shedding near the centerline. 

The vortexes from the upstream move to the two sides. Near the free end, 

the vortexes generated by the upstream cylinder attach to the center of 

the downstream cylinder and disappear. The vortex shedding in the wake 

region is generated by the downstream cylinder. It indicates that a slight 

upwash flow forms in the gap and the inflow resumes near the free end 

of the downstream cylinder. For / 5l D = , two separate vortex shedding 

regions are observed behind the two cylinders (Fig. 12(b)). The 

separation point and the form of the downstream vortex differ from the 

single case, which is mainly influenced by the extrusion effect of the 

upstream vortexes. A similar effect is observed near the free surface. 

However, the vortex shedding for / 5l D =  is very close to the single 

case, conforming to the two upwash flows observed in Fig. 8(d). For all 

three tandem cases, the vortex density and distribution width are larger 

than that in the single case. It illustrates the additional flow instability 

and energy dissipation are caused by the downstream cylinder. This also 

explains the quick decay of the wake at / 2l D =  and the cancelling 

regime at / 3,5l D = . 

  

 

 

   
(a) / 0.5y D = −  (b) / 1.5y D = −  (c) / 2.5y D = −  

 

Fig. 9 Instantaneous vorticity distributions at different spanwise directions for the single case  

 

   
(a) / 0.5y D = −  (b) / 1.5y D = −  (c) / 2.5y D = −  

 

Fig. 10 Instantaneous vorticity distributions at different spanwise directions for / 2l D =  
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(a) / 0.5y D = −  (b) / 1.5y D = −  (c) / 2.5y D = −  

 

Fig. 11 Instantaneous vorticity distributions at different spanwise directions for / 3l D =  

 

   
(a) / 0.5y D = −  (b) / 1.5y D = −  (c) / 2.5y D = −  

 
Fig. 12 Instantaneous vorticity distributions at different spanwise directions for / 5l D =  

 

 

CONCLUSIONS 

 

In this study, the flows past two tandem surface-piercing finite circular 

cylinders with various gap lengths are investigated numerically based on 

adaptive Cartesian meshes. The tandem impact on the free surface 

deformation, the velocity distribution, and the vortex shedding are 

discussed, respectively. The main conclusions are as follows: 

 

(1) Tandem impact on the free surface deformation: The wake region is 

much more influenced by the tandem arrangement, while the free surface 

deformations in the bow wave regions remain the same for different 

cases. For / 2l D = , the wake shows a superposition regime; For 

/ 3,5l D = , the wake shows a canceling regime. 

 

(2) Tandem impact on the velocity distribution: The velocity 

distributions in the gap and the wake are closely related to the gap length 

/l D . Distinct flow patterns including the flow separation at the free end, 

the circulation flow in the gap, and the upwash flow are identified for the 

three cases.  

 

(3) Tandem impact on the vortex shedding: The features of the vortex 

shedding in the cylinder wake change significantly due to the tandem 

arrangement. The interactions between the vortexes generated by the two 

cylinders are distinct with different gap length ratios. The behaviors of 

tandem impact also vary in different spanwise directions. The tandem 

arrangement, the free surface, and the free end show combined effects 

on the vortex shedding, with many distinct patterns identified. 
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